

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Plano de ensino Semestre 2020-1

I. Identificação da disciplina				
$C\'odigo$	Nome da disciplina	Horas-aula semanais		Horas-aula semestrais
MTM3111	Geometria Analítica	Teóricas: 4	Práticas: 0	72

II. Professor(es) ministrante(s)

III. Pré-requisito(s)

Não há.

María Rosario Astudillo Rojas.

IV. Curso(s) para o(s) qual(is) a disciplina é oferecida

Agronomia, Ciência e Tecnologia de Alimentos, Ciências da Computação, Ciências Econômicas, Ciências Econômicas (noturno), Engenharia Civil, Engenharia de Alimentos, Engenharia de Aquicultura, Engenharia de Controle e Automação, Engenharia de Materiais, Engenharia de Produção Civil, Engenharia de Produção Elétrica, Engenharia de Produção Mecânica, Engenharia Elétrica, Engenharia Eletrônica, Engenharia Mecânica, Engenharia Química, Engenharia Sanitária e Ambiental, Física – Bacharelado, Física – Licenciatura (noturno), Geologia, Meteorologia, Oceanografia, Química – Bacharelado, Química – Licenciatura. Este plano de ensino refere-se apenas à turma do curso Engenharia Sanitária e Ambiental (01211).

V. Ementa

Matrizes. Determinantes. Sistemas lineares. Álgebra vetorial. Estudo da reta e do plano. Curvas planas. Superfícies.

VI. Objetivos

Concluindo o programa de MTM3111 – Geometria Analítica, o aluno deverá ser capaz de:

- Operar com matrizes, calcular a inversa de uma matriz, discutir e resolver sistemas lineares por escalonamento.
- Operar com vetores, calcular os produtos escalar, vetorial e misto, bem como utilizar suas interpretações geométricas.
- Aplicar as noções de matrizes e vetores para resolver problemas com retas e planos.
- Identificar uma curva plana, reconhecer seus elementos e representá-la graficamente.
- Identificar uma quádrica de rotação, quádrica cilíndrica e quádrica de tipo cone.

VII. Conteúdo programático

Unidade 1. Matrizes de ordem $m \times n$.

- 1.1. Caracterização das matrizes.
- 1.1.1. Definição, notação e igualdade de matrizes.
- 1.1.2. Tipos de matrizes: nula, identidade, quadradas, diagonais, escalares, triangulares, simétricas e antissimétricas.
- 1.1.3. Operações com matrizes de ordem $m \times n$: adição, multiplicação por escalar, multiplicação de matrizes e as propriedades relacionadas.
- 1.2. Operações fundamentais.
- 1.2.1. Matriz na forma escalonada, posto de uma matriz na forma escalonada.
- 1.2.2. Operações elementares por linhas, posto de uma matriz.
- 1.2.3. Determinante de matrizes de ordem n (expansão de Laplace) e Teorema de Binet.
- 1.2.4. Matriz cofatora e matriz inversa. Determinação da matriz inversa pelo processo de Jordan.
- 1.3. Sistemas de equações lineares com m linhas e n colunas.
- 1.3.1. Definição de sistema de equações lineares e de solução.
- 1.3.2. Classificação do sistema com relação às soluções: compatível determinado, compatível indeterminado e incompatível.
- 1.3.3. Relação de matrizes com a existência de solução de sistemas de equações lineares.

Unidade 2. Álgebra vetorial em \mathbb{R}^3 .

- 2.1. Segmentos orientados em \mathbb{R}^3 .
- 2.1.1. Definição e exemplos.
- 2.1.2. Introdução de tamanho, direção e sentido.
- 2.1.3. Relação de equipolência.
- 2.2. Vetores em \mathbb{R}^3 .
- 2.2.1. Definição e exemplos.
- 2.2.2. Somas entre vetores, propriedades e representação geométrica.
- 2.2.3. Multiplicação por escalar, propriedades e representação geométrica.
- 2.2.4. Combinação linear, dependência e independência linear.
- 2.2.5. Definição de bases e propriedades.
- 2.2.6. Norma de um vetor e suas propriedades.
- 2.2.7. Produto escalar, propriedades e interpretação geométrica.
- 2.2.8. Ângulo entre vetores, paralelismo e ortogonalidade de vetores.
- 2.2.9. Produto vetorial, propriedades e interpretação geométrica.
- 2.2.10. Produto misto, propriedades e interpretação geométrica.

Unidade 3. Estudo da reta e do plano em \mathbb{R}^3 .

- 3.1. Sistemas de coordenadas cartesianas.
- 3.2. Estudo das retas.
- 3.2.1. Equação vetorial.
- 3.2.2. Equação paramétrica.
- 3.2.3. Equação simétrica.
- 3.2.4. Condição de paralelismo entre retas.
- 3.2.5. Condição de ortogonalidade entre retas.
- 3.2.6. Ângulo entre duas retas.
- 3.2.7. Interseção de duas retas.
- 3.3. Estudo das planos.
- 3.3.1. Equação vetorial.
- 3.3.2. Equação paramétrica.
- 3.3.3. Equação geral.
- 3.3.4. Vetor normal a um plano.
- 3.3.5. Condição de paralelismo entre dois planos.
- 3.3.6. Condição de ortogonalidade entre dois planos.
- 3.3.7. Ângulo entre planos.
- 3.3.8. Ângulo entre reta e plano.
- 3.3.9. Condição de paralelismo entre reta e plano.
- 3.3.10. Condição de ortogonalidade entre reta e plano.
- 3.3.11. Interseção de reta e plano.
- 3.3.12. Condição de paralelismo entre reta e plano.
- 3.3.13. Condição de ortogonalidade entre reta e plano.
- 3.4. Distâncias.
- 3.4.1. Entre dois pontos, um ponto a uma reta e um ponto a um plano.
- 3.4.2. Entre duas retas, entre uma reta e um plano e entre dois planos.

Unidade 4. Cônicas e superfícies quádricas e cilíndricas.

- 4.1. Cônicas.
- 4.1.1. Equação geral de um cônica.
- 4.1.2. Construção da circunferência através de distâncias.
- 4.1.3. Construção da parábola através de distâncias.
- 4.1.4. Construção da elipse através de distâncias.
- 4.1.5. Construção da hipérbole através de distâncias.
- 4.1.6. Rotação de uma cônica.
- 4.1.7. Equações reduzidas e esboço da cônica.
- 4.2. Superfícies quádricas.
- 4.2.1. Superfície esférica.
- 4.2.2. Elipsoide.
- 4.2.3. Hiperboloide de uma e duas folhas.
- 4.2.4. Paraboloide elíptico e hiperbólico.
- 4.2.5. Superfície cônica.
- 4.2.6. Formas reduzidas das quádricas.
- 4.3. Superfície cilíndrica.
- 4.4. Superfície de rotação.

VIII. Metodologia de ensino e desenvolvimento do programa

O curso será organizado e disponibilizado aos alunos através da plataforma Moodle. O conteúdo da disciplina será fracionado semanalmente e as seguintes atividades estão previstas:

- Videoaulas sobre o conteúdo da semana, separadas por tópicos (aproximadamente uma hora-aula por semana).
- Uma videoconferência semanal, para tirar dúvidas e, possivelmente, resolução de exercícios (uma hora-aula por semana).
- Uma avaliação semanal (aproximadamente meia hora-aula por semana).
- Listas de exercícios para praticar o conteúdo dos vídeos (restante da carga horária da semana).
- O aluno terá à disposição um fórum semanal para postar suas dúvidas.
- Além dos conteúdos acima, o aluno terá à disposição materiais complementares (outras videoaulas, livros e textos)
 para aprofundar seus conhecimentos. Também haverá monitores à disposição dos alunos.

Se, durante o semestre, o professor encontrar alguma forma mais eficiente de organizar a disciplina, em comum acordo com os alunos, poderá alterar a metodologia de ensino, desde que esteja em consonância com as resoluções vigentes.

IX. Metodologia de avaliação

O aluno será avaliado semanalmente, a partir da segunda semana de ensino remoto, através de avaliações em formato assíncrono, disponibilizada na plataforma Moodle. A média final será a média aritmética das avaliações semanais, excluindo-se as três menores notas. Será considerado aprovado o aluno que tiver, além de frequência suficiente, média maior ou igual a 6,0. A frequência será controlada através da plataforma Moodle, ficando a cargo do próprio aluno confirmar sua presença (uma confirmação semanal, podendo ser feita em qualquer dia e horário da semana). Se, durante o semestre, o professor encontrar alguma forma mais eficiente de organizar a disciplina, em comum acordo com os alunos, poderá alterar a forma de avaliação, desde que esteja em consonância com as resoluções vigentes.

X. Avaliação final

De acordo com o parágrafo 2º do artigo 70 da Resolução 17/Cun/97, o aluno com frequência suficiente e média das avaliações do semestre de 3,0 a 5,5 terá direito a uma nova avaliação, no final do semestre, abordando todo o conteúdo programático. A nota final desse aluno será calculada através da média aritmética entre a média das avaliações anteriores e a nota da nova avaliação.

XI. Cronograma teórico

As duas primeiras semanas de aula foram dadas no formato presencial, no mês de março. As próximas 16 semanas de aula, estão assim divididas: na semana 3, será feita uma revisão do conteúdo das semanas 1 e 2; nas semanas 4 a 17, o restante do conteúdo da disciplina será dividido; a semana 18 será para aplicação da prova de recuperação àqueles que necessitarem. Se, durante o semestre, o professor encontrar alguma forma mais eficiente de organizar a disciplina, em comum acordo com os alunos, poderá alterar o cronograma, desde que esteja em consonância com as resoluções vigentes.

XII. Cronograma prático

Não se aplica.

XIII. Bibliografia básica

- 1. Santos, R. J. Matrizes, Vetores e Geometria Analítica, Imprensa Universitária da UFMG, Belo Horizonte, edição de julho de 2013. Disponível em https://regijs.github.io/ (acessado em 16/08/2020).
- 2. Bezerra, L. H., Costa e Silva, I. Geometria Analítica, 2ª edição, UFSC, Florianópolis, 2010. Disponível em https://mtmgrad.paginas.ufsc.br/files/2014/04/Geometria-Anal%C3%ADtica.pdf (acessado em 16/08/2020).
- 3. Andrade, D., de Lacerda, J. F. Geometria Analítica, 2ª edição, UFSC, Florianópolis, 2010. Disponível em https://mtmgrad.paginas.ufsc.br/files/2020/08/Geometria-Analitica-Livro-Didatico.pdf (acessado em 16/08/2020).

${f XIV}.$ Bibliografia complementar

- 1. Boulos, P., Camargo, I. Geometria Analítica, um tratamento vetorial, 3ª edição, São Paulo.
- 2. Kuhlkamp, N. Matrizes e Sistemas de Equações Lineares, a 3ª edição revisada, Editora da UFSC, Florianópolis, 2011.
- 3. Lima, E. L. Geometria analítica e álgebra linear. Rio de Janeiro: IMPA, 2001.
- 4. Steinbruch, A., Winterle, P. Geometria Analítica, 2ª edição, Pearson Makron Books, São Paulo.

Florianópolis, 16 de agosto de 2020.

Professora María Rosario Astudillo Rojas